# Math 254B Lecture 28 Notes

Daniel Raban

June 5, 2019

# 1 Furstenberg's Slicing Theorem

## 1.1 Full construction of good CP distributions

Recap: We have  $\Phi_i x = rUx + a_i$ , where U is rotation by  $2\pi$ . This has attractor K with map S. If  $z \in \text{supp}(\nu)$ , then

$$T(z,\nu) = (Sz, S_*\nu|_{[z]_1}) = (Sz, \nu^{\alpha_1(z)}), \qquad T^t(z,\nu) = (S^tz, \nu^{\alpha_{[1;t]}(z)}).$$

Coming construction:

- Take  $\nu^{(0)} \in P(K)$ , and define  $\widehat{\mu}^{(0)} := \nu^{(0)} \times \delta_{\nu^{(0)}}$ .
- Let  $\widehat{\mu}^{(n)} = \frac{1}{n} \sum_{t=0}^{n-1} T_*^t \widehat{\mu}^{(0)}$  for each  $n \ge 1$ .
- Let  $\widehat{\mu} := \lim_{i} \widehat{\mu}^{(n_i)}$  for some weak\* convergent subsequence.
- Replace  $\widehat{\mu}$  with a "typical" ergodic component.

Recall from last time the function  $F(z, \nu) = -\log(\nu([z]_1))$ .

**Lemma 1.1.** With  $\widehat{\mu}^{(0)}$  as above, we have

$$\int F d(T_*^t \widehat{\mu}^{(0)}) = H_{\nu^{(0)}}(\alpha_{t+1} \mid \alpha_1, \dots, \alpha_t).$$

*Proof.* The left hand side is

$$\int -\log(\nu'([z']_1)) d(T_*^t \widehat{\mu}^{(0)})(z', \nu') = \int -\log(\nu'|_{[z']_1^t} (\underbrace{S^{-t}([S^t z']_1)}_{[z']_{t+1}})) d\widehat{\mu}^{(0)}(z', \nu')$$

$$= \int -\log(\nu'|_{[z']_1^t} ([z']_{t+1}) d\nu^{(0)}(z')$$

$$= \sum_w \nu^{(0)}(K_w) \int (-\log(\nu^{(0)}|_{K_w} ([z']_{t+1})) d\nu^{(0)}|_{K_w}(z')$$

$$= H_{\nu^{(0)}}(\alpha_{t+1} \mid \alpha_1, \dots, \alpha_t). \qquad \Box$$

#### Corollary 1.1.

$$\int F \, d\widehat{\mu}^{(n)} = \frac{1}{n} H_{\nu}^{(0)}(\alpha_1, \dots, \alpha_n).$$

*Proof.* Use the chain rule.

We want to make sure that when we take our weak\* limit, we keep this right hand side large.

**Lemma 1.2.** Assume that  $\nu^{(0)}(E) \leq c(\operatorname{diam}(E))^{\alpha}$  for all  $E \subseteq \mathbb{R}^2$ . Then

$$\int F d\mu^{(n)} \ge \alpha \log(r^{-1}) - o(1).$$

*Proof.* If  $w \in [k]^n$ , then diam $(K_w) \subseteq Dr^n$ . Then  $\nu^{(0)}(K_w) \le cD^{\alpha}r^{n\alpha}$ . Then

$$-\log(\nu^{(0)}(K_w)) \ge -\underbrace{\log(cD^{\alpha})}_{O(1)} + n\alpha\log(r^{-1})$$

So  $H_{\nu^{(0)}}(\alpha_1,\ldots,\alpha_n)$ , the average of the left hand side, is  $\geq -O(1) + n\alpha \log(r^{-1})$ .

So after the weak\* limit,

$$\int F \, d\widehat{\mu} \ge \alpha \log(r^{-1}).$$

Using the ergodic decomposition of  $\widehat{\mu}$ ,

$$\iint F \, d\widehat{\mu}_x d\widehat{\mu}(x) \ge \alpha \log(r^{-1}).$$

### 1.2 Measures supported on slices

If we want to work with CP-systems  $K \times P(K)$  and talk about lines, we should talk about the **CP-angle systems**,  $K \times P(K) \times \mathbb{T}$ , where  $\mathbb{T}$  says which direction the line is in. If  $z \in \mathbb{R}^2$  and  $\theta \in \mathbb{T}$ , then let  $L_{z,\theta}$  be the line through z in direction  $e^{2\pi i\theta}$ . Let

$$\tilde{X} = \{(z, \nu, \theta) \in K \times P(K) \times \mathbb{T} : \nu(K \cap L_{z,\theta}) = 1\}.$$

**Lemma 1.3.**  $\tilde{X}$  is invariant under  $T \times R_{-\xi}$ .

*Proof.* Let  $z \in \text{supp}(\nu)$ . Suppose that  $\nu(K \cap L_{z,\theta}) = 1$ . Then  $\nu|_{[z]_1}(K \cap L_{z,\theta}) = 1$ . Now

$$\nu^{\alpha_1(z)}(K \cap L_{Sz,\theta-\xi}) = \nu|_{[z]_1}(S^{-1}(K \cap L_{Sz,\theta-\xi})) \ge \nu|_{[z]_1}(K \cap L_{z,\theta}) = 1.$$

 $\textbf{Lemma 1.4.} \ \{ \tilde{\mu} \in P(K \times P(K) \times \mathbb{T}) : \widehat{\mu} \ \textit{is adapted}, \\ \tilde{\mu}(\tilde{X}) = 1 \} \ \textit{is weak* closed and convex}.$ 

This set of distributions equals

$$\bigcap_{f \in C(K \times P(K))} \left\{ \int f(z, \nu) \, d\widetilde{\mu}(z, \nu, \theta) = \int Q f(z, \nu) \, d\widehat{\mu}(z, \nu, \theta) \right\}$$

$$\cap \left\{ \int \nu(K \cap L_{z, \theta}) \, d\widetilde{\mu}(z, \nu, \theta) = 1 \right\}.$$

**Proposition 1.1.** Fix any line L with  $\dim(K \cap L) > 0$ . Then there exists an ergodic  $(T \times R_{-\xi})$ -invariant, adapted distribution  $\tilde{\mu}$  on  $K \times P(K) \times \mathbb{T}$  such that  $\tilde{\mu}$ -a.e. triple  $(z, \nu, \theta)$  lies in

$$Z = \{(z, \nu, \theta) : \nu(L \cap L_{z, \theta}) = 1, \dim(\nu) \ge \dim(K \cap L).$$

Proof. Let  $\alpha := \dim(K \cap L)$ , and assume that  $m_{\alpha}(K \cap L) > 0$ . Then Frostman's lemma gives  $\nu^{(0)} \in P(K \cap L)$  such that  $\nu^{(0)}(E) \leq c(\dim(E))^{\alpha}$  for all E. Let  $\theta^{(0)} \in \mathbb{T}$  be such that L is parallel to  $e^{2\pi I \theta^{(0)}}$ . Let  $\tilde{\mu}^{(0)} = \nu^{(0)} \times \delta_{\nu^{(0)}} \times \delta_{\theta^{(0)}}$ , let

$$\tilde{\mu}^{(n)} = \frac{1}{n} \sum_{t=0}^{n-1} (T \times R_{-\xi})_*^t \hat{\mu}^{(0)},$$

and let

$$\tilde{\mu} := \lim_{i} \tilde{\mu}^{(n_i)}$$

for some weak\* convergent subsequence. This is adapted,  $(T \times R_{\xi})$ -invariant, and

$$\int F(z,\nu) \, d\tilde{\mu}(z,\nu,\theta) \ge \alpha \log(r^{-1}).$$

If we have the ergodic decomposition  $\hat{\mu} = \int \hat{\mu}_x d\hat{\mu}(x)$  for  $(T \times R_{-\xi})$ , then there is a  $\tilde{\mu}$ -positive measure set of x such that  $\tilde{\mu}_x$  is adapted,  $(T \times R_{-\xi})$ -invariant and  $\int F \tilde{\mu}_x \ge \alpha \log(r^{-1})$ . So  $\hat{\mu}_x$  works.

If  $m_{\alpha}(K \cap L) = 0$ , extra care is needed. We have to let  $\alpha$  tend to dim $(K \cap L)$ , instead.  $\square$ 

We can finally prove Furstenberg's theorem:

*Proof.* By the proposition, product  $\tilde{\mu}$  living on Z. Consider the coordinate projection  $\varphi: K \times P(K) \times \mathbb{T} \to \mathbb{T}$ . The measure  $\varphi_* \tilde{\mu}$  is  $R_{\xi}$ -invariant, so it must be Lebesgue measure. So for m-a.e.  $\theta$ , there exists  $z, \nu$  such that  $(z, \nu, \theta) \in Z$ . So  $\nu(K \cap L_{z,\theta}) = 1$ , and  $\dim(\nu) \geq \alpha$ . This gives us that

$$\dim(K \cap L_{z,\theta}) \ge \alpha.$$